AI 大语言模型 LLM,为啥老
GPU推理提速4倍,256K上下文全球最长:无问芯穹刷新大模型优化记录
想用大模型赚钱?这个实力强劲的新面孔决定先把推理成本打下来。
原文来源:机器之心
图片来源:由无界 AI生成
大模型业务到底多烧钱?前段时间,华尔街日报的一则报道给出了参考答案。
报道显示,微软的 GitHub Copilot 业务(背后由 OpenAI 的 GPT 大模型支撑)虽然每月收费 10 美元,但平均还是要为每个用户倒贴 20 美元。可见当前 AI 服务提供商们正面临着严峻的经济账挑战 —— 这些服务不仅构建成本高昂,运营成本也非常高。
有人比喻说:「使用 AI 总结电子邮件,就像是让兰博基尼送披萨外卖。」
对此,OpenAI 算过一笔更详细的账:当上下文长度为 8K 时,每 1K 输入 token 的成本为 3 美分,输出的成本为 6 美分。目前,OpenAI 拥有 1.8 亿用户,每天收到的查询数量超过 1000 万次。这样算来,为了运营 ChatGPT 这样的模型,OpenAI 每天都需要在必要的计算硬件上投入大约 700 万美元,可以说是贵得吓人。
降低 LLM 的推理成本势在必行,而提升推理速度成为一条行之有效的关键路径。
实际上,研究社区已经提出了不少用于加速 LLM 推理任务的技术,包括 DeepSpeed、FlexGen、vLLM、OpenPPL、FlashDecoding 和 TensorRT-LLM 等。这些技术自然也各有优势和短板。其中,FlashDecoding 是 FlashAttention 作者、斯坦福大学团队的 Tri Dao 等人在上个月提出的一种 state-of-the-art 方法,它通过并行加载数据,大幅提升了 LLM 的推理速度,被认为极具潜力。但与此同时,它也引入了一些不必要的计算开销,因此依然存在很大的优化空间。
为了进一步解决问题,近日,来自无问芯穹(Infinigence-AI)、清华大学和上海交通大学的联合团队提出了一种新方法 FlashDecoding++,不仅能带来比之前方法更强的加速能力(可以将 GPU 推理提速 2-4 倍),更重要的是还同时支持 NVIDIA 和 AMD 的 GPU!它的核心思想是通过异步方法实现注意力计算的真正并行,并针对「矮胖」矩阵乘优化加速 Decode 阶段的计算。
论文地址:https://arxiv.org/pdf/2311.01282.pdf
将 GPU 推理提速 2-4 倍,
FlashDecoding++ 是怎么做到的?
LLM 推理任务一般为输入一段文字(token),通过 LLM 模型计算继续生成文字或其他形式的内容。
LLM 的推理计算可被分为 Prefill 和 Decode 两个阶段,其中 Prefill 阶段通过理解输入文字,生成第一个 token;Decode 阶段则顺序输出后续 token。在两个阶段,LLM 推理的计算可被分为注意力计算和矩阵乘计算两个主要部分。
对于注意力计算,现有工作如 FlashDecoding 切分注意力计算中的 softmax 算子实现并行加载数据。这一方法由于需要在不同部分 softmax 同步最大值,在注意力计算中引入了 20% 的计算开销。而对于矩阵乘计算,在 Decode 阶段,左乘矩阵多表现为「矮胖」矩阵,即其行数一般不大(如 <=8),现有 LLM 推理引擎通过补 0 将行数扩充到 64 从而利用 Tensor Core 等架构加速,从而导致大量的无效计算(乘 0)。
为解决上述问题,「FlashDecoding++」的核心思想在于,通过异步方法实现注意力计算的真正并行,并针对「矮胖」矩阵乘优化加速 Decode 阶段的计算。
异步并行部分 softmax 计算
图 1 异步并行部分 softmax 计算
先前工作对每个部分 softmax 计算求输入最大值作为缩放系数,避免 softmax 计算中 e 指数的溢出,这就导致了不同部分 softmax 计算的同步开销(图 1 (a)(b))。
图 2 softmax 输入值统计分布
「FlashDecoding++」指出,对于大部分 LLM,其 softmax 的输入分布较为集中。如图 2 所示,Llama2-7B 的 softmax 输入 99.99% 以上集中在 [-16.8, 6.5] 这个区间。因此,「FlashDecoding++」提出在部分 softmax 计算时使用一个固定的最大值(图 1 (c)),从而避免了不同部分 softmax 计算间的频繁同步。而当小概率发生的输入超出给定范围时,「FlashDecoding++」对这一部分的 softmax 计算退化为原先的计算方法。
「矮胖」矩阵乘的优化
图 3 「矮胖」矩阵乘切分与双缓存机制
由于 Decode 阶段的输入为一个或几个 token 向量,因此该阶段的矩阵乘表现为「矮胖」形状。以矩阵 A×B=C 为例,A 与 B 矩阵的形状为 M×K 与 K×N,「矮胖」矩阵乘即 M 较小的情况。「FlashDecoding++」指出「矮胖」矩阵乘一般缓存受限,并提出双缓存机制等优化手段进行加速(图 3)。
图 4 自适应矩阵乘实现