复制成功

分享至

主页 > Web3.0 >

基于均值场博弈理论创立的CP505协议在杯赛制中的博弈机制创新

2024.06.06

作者:胡烜峰 王建国 聂雪明  苏海峥

研究机构:香港区块链应用与投资研究院


摘要:本文通过区块链技术,基于以太坊开发框架,创立了CP505协议,并引入了以均值场博弈(Mean Field Game, MFG)理论为基础来构建博弈模型,这个新模型适用于所有杯赛制竞技类游戏。

与现有国际通行的以赔率为核心的博弈机制不同,CP505协议构建了一种在数学和博弈论上更加合理的博弈模型。

通过分析传统博弈市场的局限性,本文结合区块链技术,创立了ERC721协议和ERC20协议的联动协议CP505,结合随机数生成机制和成熟的金融模型,实现了一个更加公平、透明区别于现有以赔率为核心的博彩机制的全新博弈机制,在历史上,第一次将竞技体育类的博弈和金融模型融合,创造了独特的以去中心化、公平透明、非合作博弈的基础底层协议。


关键词:均值场博弈理论;CP505协议;杯赛协议;博弈机制创新;404协议创新


一、引言

在国际公开的大型杯赛体系中,国际上合法博彩集团扮演了制定游戏规则这个重要的角色,对整个体育产业资本都有着举足轻重都影响。每次大型世界赛事,例如世界杯足球赛,博彩公司给出所有参赛球队的赔率,而全球的球迷会根据自己的喜好,选择各自的球队进行投注。[1] 

这其中的赔率设定涉及到非常复杂的数学分析设定,是整个竞技博弈中的核心。正因为赔率是根据参赛队的实力、球员当前状态、球队历史表现等一系列指标进行加权计算,由博彩公司主观的给出。对博彩公司最理想的状况是任意一个比赛的结果,玩家的筹码胜负结果可以互相抵消,博彩公司赚取无风险的手续费,这是非常理想也是完全正常的商业模式。

然而因为竞技体育存在着很多偶然性,并且球迷会有天然的倾向,在某些时候,涉及到全球关注的重要比赛,全球投注的巨大金额,会出现大量的押注单一方向。结果会导致一旦比赛爆冷,大部分玩家猜错了,博彩集团会有超额收益,少部分压中玩家也会获得巨大收益,但一旦大部分玩家压中,博彩集团将面临巨额赔付。

尽管今天的赔率制度已经发展到了非常复杂的数学模型以及通过互联网实现了实时调整赔率的动态机制,但有时候球迷对某些球队对喜爱是会严重影响真实实力对。很多极端的情况,会导致博彩集团面临风险。例如2014年世界杯半决赛德国对巴西,两个队排名和水平接近,理论上赔率应该相差不大,但巴西有主场优势,并且2014年的巴西队群星闪耀,得益于互联网在全球的快速发展,使得巴西队拥有海量的热爱者,这导致当时出现了历史罕见的一边倒押注,绝大多数的筹码都放在巴西最终获胜晋级决赛上面,博彩公司面临大赚和大亏的两难选择,被迫成为绝大多数资金的对手盘,这对任何博彩集团来说,都是不可接受的。虽然没有证据表明比赛被操纵,但在历史上这次比赛中,德国队在巴西主场以7:1的比分,大胜具有主场优势的夺标最大热门巴西队,获胜晋级,这个赛前无法想象的比分也几乎没有玩家猜中。从结果来看,博彩公司是最大的获益者。而在国际所有赛事中,球迷都总结出一个没有科学依据的规律,“大热必死”,但其实这背后是由于零和博弈带来的巨大风险,让“大热”的队伍“死亡”是降低商业风险最无奈的办法。而这条朴素的,由球迷们总结出来的规律是如此的不符合概率学,也间接证明了,存在信息不对称干预比赛的结果。

传统的博彩集团,虽然从商业模式上,不是以下场参与对赌为目的,但单纯的赔率投注方法,一定有概率需要博彩集团赔出更多的赌注,想要从源头上遏制人为干预比赛,绝不是制定法律法规严格执法去杜绝人为干预,而是需要从机制上改变传统的由庄家主动给出赔率的博弈方式。随着区块链技术的日益成熟,利用区块链技术的透明性、去中心化性、可编程性,能够实现让游戏规则不可被任何人篡改,通过多个标准协议的组合,本文提出了一种基于均值场博弈理论的全新博弈合约CP505协议。

二、相关工作 

2.1  均值场博弈理论 (Mean Field Games, MFG):

Pierre-Louis Lions 等人在2006至2007年提出的均值场博弈理论[2],为大量同质智能体参与的博弈提供了均衡解。该理论在数学上描述了在大量参与者的系统中,个体如何基于其他参与者的统计学上的行为来做出最优决策。

2.2博弈论 (Game Theory):

博弈论[3]是研究具有冲突和合作特征的决策者之间互动的数学理论。它为理解和预测赛会制博彩游戏中的策略行为提供了框架。

2.3市场机制设计 (Market Mechanism Design) [4]:

市场机制设计关注如何设计市场规则以实现特定的经济目标,如效率、公平性和透明度。

2.4加密货币和区块链技术 (Cryptocurrency and Blockchain Technology):

加密货币和区块链技术提供了一种去中心化的价值转移机制,它为创建透明和不可篡改的博彩游戏平台提供了技术基础。[5]

2.5行为经济学 (Behavioral Economics):

行为经济学结合了心理学和经济学,研究人们在经济决策中的非理性行为,这对于理解和设计博彩游戏的用户互动具有重要意义。[6]

2.6赛会制博彩市场分析 (Tournament Betting Market Analysis):

对赛会制博彩市场的分析,包括赔率设定、市场流动性和信息效率,为设计博彩游戏提供了实证研究基础。[7]

2.7囚徒困境:一个经典的二人非合作博弈模型,其中每个参与者的从个体最优选择出发的决策,导致了对所有参与者都较差的结果。这个概念最早由阿尔伯特·W·塔克在1950年提出。[8]

2.8多人博弈的计算困难性:随着博弈参与者数量的增加,找到均衡解的难度显著增加。这是因为博弈的策略空间随参与者数量呈指数增长,导致计算均衡变得更加复杂。[9]

2.9多人博弈的均衡:在多人博弈中,纳什均衡可能不存在或难以找到,这是因为每个参与者的最优响应策略依赖于其他所有参与者的策略,而每个人的策略选择空间都很大。[10]

三、理论基础与模型构建

3.1 均值场博弈理论在假设中的应用

如果用户的每一份投注都可以变成无数的碎片进行交易,由市场来对碎片自由定价,而这些碎片又能自由的实现全新的投注,这就将传统的赔率方式,转化为了一种金融方式。而问题从分析研究用户的投注问题,转化为分析用户的金融行为,进而转化为近乎无限的同质对手的博弈策略问题。

在经典的博弈论中,游戏发生在场景中的对手之间,通常只涉及两个人,比如著名的囚徒困境问题。涉及三个对手的游戏在计算上是非常困难的,很难达到均衡,这就是为什么西部片《好人、坏人和丑陋的人》如此经典。如果参与游戏的人数达到四个、五个或更多,从数学上来说是无法解决的,这里面所说的无法解决,是指没有所谓的最佳策略,因此游戏的参与人无法采用趋同的策略。

然而,如果游戏中的对手数量可以被认为是无限的,从数学上来说是有解的。法国数学家、菲尔兹奖得主Pierre-Louis Lions和其他几位数学家在2006年至2007年提出均值场博弈理论,对于一个近乎无限的同质对手参与的游戏,可以从数学上得到均衡状态下的概率分布,从而得到游戏参与者在均衡点处的最佳策略。

当均值场博弈理论在刚开始被提出时,人们并没有认为这个理论在金融领域有任何应用。建立均值场博弈理论的前提是游戏的对手是同质的,而在传统金融市场中,游戏对手的能力和类型完全不同,有具有内幕知识和实际执行力的公司管理层,有机构和大账户,还有许多个人投资者,正因为游戏的对手不同质,所以总是存在操纵,例如股价不是一个公平博弈的结果,掌握内幕消息的大股东或者管理层,或者看清了筹码分布的大资金,这些通常是股价的操纵者。

3.2均值场博弈理论

均值场博弈(mean field game,MFG)理论专门探讨数量庞大的智能体(agent)在竞争环境下所使用的策略,每个智能体都会因应身边其他智能体所采取的行动而随之应变,务求令自可获得最大利益。

智能体的假设通常包括以下几点:

1.同质性:所有智能体都是同质的,即它们具有相同的偏好和决策能力。

2.大量智能体:系统中存在大量的智能体,以至于单个智能体的行为对整个系统的影响可以忽略不计。

3.相互作用的简化:智能体之间的相互作用通过智能体行为的平均效应(即均值场)来简化表示,而不是通过个体间的直接相互作用。

4.连续时间:智能体的行为和决策过程通常在连续时间框架下进行建模。

5.理性:智能体被假设为理性的,即它们会根据自身的利益最大化目标来选择最优策略。

6.信息结构:在某些模型中,智能体可能具有不同的信息结构,例如完全信息或不完全信息。

7.策略选择:智能体会根据其他智能体的平均行为来调整自己的策略,以实现个体效用的最大化。

8.稳定性和均衡:智能体的行为会趋向于某种均衡状态,如纳什均衡,这是MFG理论分析的重点之一。

免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

加⼊OKEx全球社群

和全球数字资产投资者交流讨论

扫码加入OKEx社群

相关推荐

industry-frontier