复制成功

分享至

主页 > 数字货币 >

ChatGPT带来的AI热潮: 区块链技术如何解决AI发展的挑战与瓶颈

2023.03.29

过去两周,生成式人工智能 (AI) 领域是毫无疑问的热点,突破性的新版本和尖端集成不断涌现。 OpenAI 发布了备受期待的 GPT-4 模型,Midjourney 发布了最新的 V5 模型,Stanford 发布了 Alpaca 7B 语言模型。与此同时,谷歌在其整个 Workspace 套件中推出了生成式人工智能,Anthropic 推出了其人工智能助手 Claude,而微软则将其强大的生成式人工智能工具 Copilot 集成到了 Microsoft 365 套件中。

随着企业开始意识到人工智能和自动化的价值以及采用这些技术以保持市场竞争力的必要性,人工智能开发和采用的步伐愈发加快。

尽管人工智能发展看似进展顺利,但仍有一些潜在的挑战和瓶颈需要解决。随着越来越多的企业和消费者接受人工智能,计算能力方面的瓶颈正在出现。人工智能系统所需的计算量每隔几个月就会翻一番,而计算资源的供应却难以跟上步伐。此外,训练大规模人工智能模型的成本持续飙升,过去十年每年增长约 3100%。

开发和训练尖端人工智能系统所需的成本上升和资源需求增加的趋势正在导致集中化,只有拥有大量预算的实体才能进行研究和生产模型。然而,一些基于加密技术的项目正在构建去中心化解决方案,以使用开放计算和机器智能网络解决这些问题。

人工智能(AI)和机器学习(ML)基础

AI 领域可能令人望而生畏,深度学习、神经网络和基础模型等技术术语增加了其复杂性。现在,就让我们简化这些概念以便于理解。

  • 人工智能是计算机科学的一个分支,涉及开发算法和模型,使计算机能够执行需要人类智能的任务,例如感知、推理和决策制定;

  • 机器学习 (ML) 是 AI 的一个子集,它涉及训练算法以识别数据中的模式并根据这些模式进行预测;

  • 深度学习是一种涉及使用神经网络的 ML,神经网络由多层相互连接的节点组成,这些节点协同工作以分析输入数据并生成输出。

  • 基础模型,例如 ChatGPT 和 Dall-E,是经过大量数据预训练的大规模深度学习模型。这些模型能够学习数据中的模式和关系,使它们能够生成与原始输入数据相似的新内容。 ChatGPT 是一种用于生成自然语言文本的语言模型,而 Dall-E 是一种用于生成新颖图像的图像模型。

    AI和ML行业的问题

    人工智能的进步主要由三个因素驱动:

  • 算法创新:研究人员不断开发新的算法和技术,让人工智能模型能够更高效、更准确地处理和分析数据。

  • 数据:人工智能模型依赖大型数据集作为训练的燃料,使它们能够从数据中的模式和关系中学习。

  • 计算:训练 AI 模型所需的复杂计算需要大量的计算处理能力。

  • 然而,有两个主要问题阻碍了人工智能的发展。回到2021年,获取数据是人工智能企业在人工智能发展过程中面临的首要挑战。去年,与计算相关的问题超越了数据成为挑战,特别是由于高需求驱动下无法按需访问计算资源。

    第二个问题与算法创新效率低下有关。虽然研究人员通过在以前的模型的基础上继续对模型进行增量改进,但这些模型提取的智能或模式总是会丢失。

    让我们更深入地研究这些问题。

    计算瓶颈

    训练基础机器学习模型需要大量资源,通常需要长时间使用大量 GPU。例如,Stability.AI 需要在 AWS 的云中运行 4,000 个 Nvidia A100 GPU 来训练他们的 AI 模型,一个月花费超过 5000 万美元。另一方面,OpenAI 的 GPT-3 使用 1,000 个 Nvidia V100 GPU 进行训练,耗资 1,200 万美元。

    人工智能公司通常面临两种选择:投资自己的硬件并牺牲可扩展性,或者选择云提供商并支付高价。虽然大公司有能力选择后者,但小公司可能没有那么奢侈。随着资本成本的上升,初创公司被迫削减云支出,即使大型云提供商扩展基础设施的成本基本保持不变。

    人工智能的高昂计算成本给追求该领域进步的研究人员和组织造成了重大障碍。目前,迫切需要一种经济实惠的按需无服务器计算平台来进行 ML 工作,这在传统计算领域是不存在的。幸运的是,一些加密项目正在致力于开发可以满足这一需求的去中心化机器学习计算网络。

    效率低下和缺乏协作

    越来越多的人工智能开发是在大型科技公司秘密进行的,而不是在学术界。这种趋势导致该领域内的合作减少,例如微软的 OpenAI 和谷歌的 DeepMind 等公司相互竞争并保持其模型的私密性。

    缺乏协作导致效率低下。例如,如果一个独立的研究团队想要开发一个更强大的 OpenAI 的 GPT-4 版本,他们将需要从头开始重新训练模型,基本上是重新学习 GPT-4 训练的所有内容。考虑到仅 GPT-3 的培训成本就高达 1200 万美元,这让规模较小的 ML 研究实验室处于劣势,并将人工智能发展的未来进一步推向大型科技公司的控制。

    但是,如果研究人员可以在现有模型的基础上构建而不是从头开始,从而降低进入壁垒;如果有一个激励合作的开放网络,作为一个自由市场管理的模型协调层,研究人员可以在其中使用其他模型训练他们的模型,会怎么样呢?去中心化机器智能项目 Bittensor 就构建了这种类型的网络。

    机器学习的分散式计算网络

    去中心化计算网络通过激励 CPU 和 GPU 资源对网络的贡献,将寻求计算资源的实体连接到具有闲置计算能力的系统。由于个人或组织提供其闲置资源没有额外成本,因此与中心化提供商相比,去中心化网络可以提供更低的价格。

    存在两种主要类型的分散式计算网络:通用型和专用型。通用计算网络像分散式云一样运行,为各种应用程序提供计算资源。另一方面,特定用途的计算网络是针对特定用例量身定制的。例如,渲染网络是一个专注于渲染工作负载的专用计算网络。

    尽管大多数 ML 计算工作负载可以在分散的云上运行,但有些更适合特定用途的计算网络,如下所述。

    机器学习计算工作负载

    免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

    加⼊OKEx全球社群

    和全球数字资产投资者交流讨论

    扫码加入OKEx社群

    相关推荐

    industry-frontier