3EX AI交易平台Space回顾:
全景解读Bittensor的34个子网和发展趋势
Bittensor(TAO)是今年第一个在 Binance 上市的 AI 币。本以为这是 AI 赛道全面开启的第一步,没想到却成了短期的「最后一步」。自 4 月 11 日上线后,TAO 的价格便开始了一落千丈的走势,至今仍然没有回升的态势。
紧随着币价下跌的,是社区对这个项目的有效性的争论越来越激烈。这一切肇始于 3 月 30 日 Taproot Wizards 联合创始人 Eric Wall 在社交媒体上对 Bittensor(TAO)发出的一连串尖锐质疑,如今已经创下接近 200 万的阅读量。
Eric Wall 的核心观点可以归纳为:
・子网 1 中众多矿工重复执行相同的语言模型来回答提示,效率低下且资源浪费。一个矿工就能完成任务,没必要上千个矿工并行。
・子网 1 的验证机制过于简单,只比对答案相似度,矿工容易投机取巧、作弊。
・目前子网 1 仅在内部运行,普通用户无法使用,没有实用价值。
・Bittensor 项目只是在炒作「去中心化 AI」概念,忽悠散户投资者,让代币价格虚高。
这些质疑虽然直指 Bittensor 的一些痛处,但未免也有以偏概全、一叶障目之嫌。多矿工冗余看似低效,实则是分布式协作的必经之路。Bittensor 的目标是打造一个全球规模的 AI 网络,冗余是必要成本,而非设计缺陷。
验证机制目前还比较初级,但 Bittensor 一直在积极改进。最新的计划包括引入 Commit-Reveal 权重机制,通过延迟公开矿工提交的权重,Commit-Reveal 机制能够很好地遏制投机取巧的抄袭行为。
子网 1 作为 Bittensor 的第一个子网,其定位主要是在进行内部训练和测试。但 Bittensor 生态已经拓展到数十个面向不同应用场景的子网,它们在搜索、医疗、教育、游戏等领域提供了切实的价值。将 Bittensor 简单地归类为「AI meme 币」,并以此否定其价值,本身就是一种非理性和短视的做法。
尽管面对这些质疑和挑战,Bittensor 并未停滞不前。相反,它在不断扩展和改进自身网络。5 月 12 日,Bittensor 宣布将每周增加 4 个子网插槽,直至达到新的 64 个插槽上限,今年的目标是迈向 1024 个子网。
截至目前,Bittensor 已经拥有 34 个子网,这些子网覆盖了多个领域,充分展示了去中心化 AI 的潜力和多样性。接下来,本文将从内容生成、数据搜集与处理、LLM 生态系统、去中心化基础设施、DeFi 和其他应用六个领域对这些子网进行逐一介绍,以期读者能够对 Bittensor 生态有一个全面清晰的认知。
内容生成
内容生成类别的子网为文本、图像、音频、视频的生成和优化提供平台。
文本提示(子网 1):由 Opentensor 基金会开发,是专门用于文本生成的去中心化子网。它利用大型语言模型(如 GPT-3、GPT-4 等)进行提示和推理,矿工提供 AI 服务,验证者负责验证预测结果。
MyShell TTS(子网 3):由 MyShell 开发,专注于文本转语音(TTS)技术。该子网开发和优化开源 TTS 模型,如 OpenVoice 和 MeloTTS,矿工负责训练模型,验证者评估模型性能,致力于创建高质量的开源 TTS 模型。
Multi Modality(子网 4):由 Manifold 开发,专注于多模态 AI 系统,处理和生成跨多种数据类型和格式的信息,包括文本、图像和音频。
Three Gen(子网 17):是一个专注于 AI 驱动的 3D 内容生成的去中心化子网。Three Gen 子网利用 AI 技术生成 3D 模型和内容,矿工和验证者通过贡献计算资源和验证生成内容的质量来获得奖励,推动 3D 内容生成技术的发展。
Cortex.t(子网 18):由 Corcel 开发,是一个专注于 AI 开发和合成数据生成的去中心化子网。
Vision(子网 19):是一个专注于图像生成和推理的去中心化子网。Vision 子网利用分布式规模推理子网(DSIS)框架,最大化 Bittensor 网络的产出能力,允许矿工自由选择技术堆栈处理需求并生成响应。验证者从前端接收需求并分发给矿工,评估其表现,使图像生成过程更加高效。
Niche Image(子网 23):是一个专注于去中心化图像生成的子网。Niche Image 支持多种图像生成模型,矿工通过贡献计算资源生成图像,并根据质量获得奖励,不断引入新模型和功能满足用户需求。
TensorAlchemy(子网 26):是一个专注于人类评分和去中心化图像生成的子网。通过人类评分评估图像生成模型的输出,并根据评分和生成的图像质量奖励矿工,计划在艺术创作和广告等领域应用其技术。