复制成功

分享至

主页 > 比特币 >

大模型走捷径「刷榜」?数据污染问题值得重视

2023.11.09

原文来源:机器之心

大模型走捷径「刷榜」?数据污染问题值得重视

图片来源:由无界 AI生成

生成式 AI 元年,大家的工作节奏快了一大截。

特别是,今年大家都在努力卷大模型:最近国内外科技巨头、创业公司都在轮番推出大模型,发布会一开,个个都是重大突破,每一家都是刷新了重要 Benchmark 榜单,要么排第一,要么第一梯队。

在兴奋于技术进展速度之快后,很多人发现似乎也有些不对味:为什么排行榜第一人人有份?这是个什么机制?

于是乎,「刷榜」这个问题也开始备受关注。

近日,我们关注到朋友圈和知乎社区对大模型「刷榜」这一问题的讨论越来越多。特别是,知乎一篇帖子:如何评价天工大模型技术报告中指出很多大模型用领域内数据刷榜的现象?引起了大家的讨论。

大模型走捷径「刷榜」?数据污染问题值得重视

链接:https://www.zhihu.com/question/628957425

多家大模型刷榜机制曝光

该研究来自昆仑万维的「天工」大模型研究团队,他们上个月底把一份技术报告发布在了预印版论文平台 arXiv 上。

大模型走捷径「刷榜」?数据污染问题值得重视

论文链接:https://arxiv.org/abs/2310.19341

论文本身是在介绍 Skywork-13B,这是天工的一个大型语言模型(LLM)系列。作者引入了使用分段语料库的两阶段训练方法,分别针对通用训练和特定领域的增强训练。

和往常有关大模型的新研究一样,作者表示在流行的测试基准上,他们的模型不仅表现出色,而且在很多中文的分支任务上取得了 state-of-art 水平(就是业内最佳)。

重点是,该报告还验证了下很多大模型的真实效果,指出了一些其他一些国产大模型存在投机取巧的嫌疑。说的就是这个表格 8:

大模型走捷径「刷榜」?数据污染问题值得重视

在这里,作者为了验证目前业内几个常见大模型在数学应用问题基准 GSM8K 上的过拟合程度,使用 GPT-4 生成了一些与 GSM8K 形式上相同的样本,人工核对了正确性,并让这些模型在生成的数据集,和 GSM8K 原本的训练集、测试集上比了比,计算了损失。然后还有两个指标:

大模型走捷径「刷榜」?数据污染问题值得重视

Δ1 作为模型训练期间潜在测试数据泄漏的指标,较低的值表明可能存在泄漏。没有用测试集训练,那数值应该为零。

大模型走捷径「刷榜」?数据污染问题值得重视

Δ2 衡量数据集训练分割的过度拟合程度。较高的 Δ2 值意味着过拟合。如果没有用训练集训练过,那数值应该为零。

用简单的话来解释就是:如果有模型在训练的时候,直接拿基准测试里面的「真题」和「答案」来当学习资料,想以此来刷分,那么此处就会有异常。

好的,Δ1 和 Δ2 有问题的地方,上面都贴心地以灰色突出显示了。

网友对此评论道,终于有人把「数据集污染」这个公开的秘密说出来了。

也有网友表示,大模型的智力水平,还是要看 zero-shot 能力,现有的测试基准都做不到。

大模型走捷径「刷榜」?数据污染问题值得重视

图:截图自知乎网友评论

在作者与读者中互动中,作者也表示,希望「让大家更理性看待刷榜这个事情,很多模型和 GPT4 的差距还很大」。

大模型走捷径「刷榜」?数据污染问题值得重视

图:截图自知乎文章 https://zhuanlan.zhihu.com/p/664985891

数据污染问题值得重视

其实,这并不是一时的现象。自从有了 Benchmark,此类问题时常会有发生,就像今年 9 月份 arXiv 上一篇极具嘲讽意味的文章标题指出的一样 Pretraining on the Test Set Is All You Need。

大模型走捷径「刷榜」?数据污染问题值得重视

除此之外,最近人民大学、伊利诺伊大学香槟分校一个正式研究同样指出了大模型评估中存在的问题。标题很扎眼《Don't Make Your LLM an Evaluation Benchmark Cheater》:

大模型走捷径「刷榜」?数据污染问题值得重视

论文链接:https://arxiv.org/abs/2311.01964

论文指出,当前火热的大模型领域让人们关心基准测试的排名,但其公平性和可靠性正在受到质疑。其中主要的问题就是数据污染和泄露,这样的问题可能会被无意识地触发,因为我们在准备预训练语料库时可能不知道未来的评估数据集。例如,GPT-3 发现预训练语料库中包含了 Children's Book Test 数据集,LLaMA-2 的论文曾提到提取了 BoolQ 数据集中的上下文网页内容。

数据集是需要很多人花费大量精力收集、整理和标注的,优质的数据集如果优秀到能被用于评测,那自然也有可能会被另一些人用于训练大模型。

免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

加⼊OKEx全球社群

和全球数字资产投资者交流讨论

扫码加入OKEx社群

相关推荐

industry-frontier